$V = 3775.7 (17) \text{ Å}^3$

Mo Ka radiation

 $0.18 \times 0.16 \times 0.12 \text{ mm}$

21427 measured reflections

7729 independent reflections

5450 reflections with $I > 2\sigma(I)$

 $\mu = 4.26 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.062$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[3,3'-Bis(1-naphthylmethyl)-1,1'-(2,2'oxydiethylene)bis(imidazol-2-ylidene)]mercury(II) bis(hexafluoridophosphate) acetonitrile solvate

Wen-Yan Guo^a* and Gui-Ying Dong^b

^aDepartment of Chemistry, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China Correspondence e-mail: guowenyan2008@yahoo.com.cn

Received 26 December 2008; accepted 14 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; disorder in solvent or counterion; R factor = 0.054; wR factor = 0.101; data-to-parameter ratio = 14.0.

In the title compound, $[Hg(C_{32}H_{30}N_4O)](PF_6)_2 \cdot CH_3CN$, the mercury(II) ion is coordinated by two carbene C atoms $[Hg-C = 2.060 \ (6) \ and \ 2.066 \ (6) \ Å]$ and one ether O atom $[Hg-O = 2.561 \ (5) \ Å]$ in a distorted T-shaped geometry with a C-Hg-C angle of 166.3 (3)°. One hexafluoridophosphate anion is rotationally disordered between two orientations with an approximate ratio of 2:1. The crystal packing exhibits weak intermolecular C-H···F and C-H···N interactions.

Related literature

For the crystal structures of related silver, gold and palladium complexes, see: Wang *et al.* (2005); Nielsen *et al.* (2006). For the details of synthesis of nucleophilic heterocyclic carbene ligands, see: Arduengo *et al.* (1991); Wang *et al.* (2006).

Experimental

Crystal data

[Hg(C₃₂H₃₀N4O)](PF₆)₂·C₂H₃N $M_r = 1018.18$ Monoclinic, $P2_1/n$ a = 9.204 (2) Å b = 11.433 (3) Å c = 35.922 (10) Å $\beta = 92.837$ (5)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.448, T_{\rm max} = 0.590$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	108 restraints
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
7729 reflections	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$
552 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5 - H5A \cdots F3$	0.97	2.50	3.384 (9)	151
$C5 - H5B \cdots F7$	0.97	2.39	3.307 (9)	157
$C18 - H18A \cdots F4^{i}$	0.97	2.53	3.150 (10)	122
$C22 - H22B \cdots F9^{ii}$	0.97	2.46	3.195 (11)	132
$C24 - H24 \cdots N4$	0.93	2.50	2.847 (9)	103

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y - 1, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Shanxi Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2505).

References

Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Nielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2006).

Organometallics, **25**, 4850–4856.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J.-W., Li, Q.-S., Xu, F.-B., Song, H.-B. & Zhang, Z.-Z. (2006). *Eur. J. Org. Chem.* pp. 1310–1316.

Wang, J.-W., Song, H.-B., Li, Q.-S., Xu, F.-B. & Zhang, Z.-Z. (2005). Inorg. Chim. Acta, 358, 3653–3658.

Acta Cryst. (2009). E65, m217 [doi:10.1107/S1600536809001743]

[3,3'-Bis(1-naphthylmethyl)-1,1'-(2,2'-oxydiethylene)bis(imidazol-2-ylidene)]mercury(II) bis(hexafluoridophosphate) acetonitrile solvate

W.-Y. Guo and G.-Y. Dong

Comment

Nucleophilic heterocyclic carbene (NHC) ligands have enjoyed wide applicability as ligands for transition metals in a variety of catalytic transformations since they were first isolated in 1991 (Arduengo *et al.*, 1991). The silver, gold and palladium complexes of bis-NHC ligands bearing a weakly coordinating ether functionality have been reported (Wang *et al.*, 2005; Nielsen *et al.*, 2006). To study further the coordination chemistry of this ligand, we report here the crystal structure of the title complex, (I).

The title compound, $[Hg(C_{32}H_{30}N_4O)](PF_6)_2[CH_3CN]$ (I), crystallizes with one (*R*)-2,2'-bis[1*H*-imidazole-3-oxyethyl-1-(1-menaphthyl)]-1,1'-binaphthyl mercury (II) cation, two hexafluoridophosphate anions and one acetonitrile solvate molecule in an asymmetric unit. The cation of (I) is a 10-membered macrocyclic metal complex of naphthyl-carbene ligand adopting a *cis*-conformation. The geometry of the Hg(II) coordination is distorted T-shaped, formed by two C(carbene) atoms [Hg—C = 2.060 (6) and 2.066 (6) Å] and one ether oxygen atom with bond angle C2—Hg1—O1=83.6 (2)°, C1—Hg1—O1=82.9 (2)° and C1—Hg1—C2=166.3 (3)°, respectively. The crystal packing exhibits weak intermolecular C—H…F and C—H…N interactions (Table 1).

Experimental

The ligand 1,1'-(oxy-1,2-ethanediyl)bis[3-(1-naphthalenemethyl)imidazolium bis(hexafluoridophosphate) was prepared according to the reported procedure (Wang *et al.*, 2006). Anhydrous Hg(OAc)₂ (29.5 mg, 0.10 mmol) was added to a solution of the corresponding diazolium salt (77.0 mg, 0.10 mmol) in acetonitrile (25 ml) under argon. The mixture was refluxed for 12 h and then cooled to the room temperature. the acetonitrile was removed *in vacuo* to give a white solid which was washed with methanol to give the crude product. White single crystals of the title compound were obtained by recrystallization from acetonitile and ethyl ether (yield: 90%) Anal. Calcd. for $C_{34}H_{33}F_{12}HgN_5OP_2$: C, 40.11; H, 3.27; N, 6.88 Found: C, 40.10; H, 3.22; N 6.85

Refinement

All H atoms were geometrically positioned [C—H= 0.93-0.96 Å] and refined as riding, with $U_{iso}(H) = 1.2 - 1.5 U_{eq}(C)$. The six F atoms of one hexafluoridophosphate anion show rotational disorder, and they were refined as two groups sharing the same P atom with the occupancies refined to 0.676 (17) and 0.324 (17), respectively. The P—F and F—F distances were restrained to 1.56 (1) and 2.21 (1) Å, respectively. The displacement parameters of the disordered F atoms were also restrained to be approximately isotropic.

Figures

Fig. 1. The molecular structure of the cation in (I) showing the atomic numbering and 30% probability displacement ellipsoids.

[3,3'-Bis(1-naphthylmethyl)-1,1'-(2,2'-oxydiethylene)bis(imidazol-2- ylidene)]mercury(II) bis(hexafluoridophosphate) acetonitrile solvate

Crystal d	lata
-----------	------

[Hg(C ₃₂ H ₃₀ N4O)](PF ₆) ₂ ·C ₂ H ₃ N	$F_{000} = 1992$
$M_r = 1018.18$	$D_{\rm x} = 1.791 { m Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.204 (2) Å	Cell parameters from 857 reflections
b = 11.433 (3) Å	$\theta = 2.3 - 22.3^{\circ}$
c = 35.922 (10) Å	$\mu = 4.26 \text{ mm}^{-1}$
$\beta = 92.837 \ (5)^{\circ}$	T = 293 (2) K
$V = 3775.7 (17) \text{ Å}^3$	Block, white
Z = 4	$0.18 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	7729 independent reflections
Radiation source: fine-focus sealed tube	5450 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.062$
T = 293(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.448, T_{\max} = 0.590$	$k = -14 \rightarrow 13$
21427 measured reflections	$l = -44 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 0.5948P]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
7729 reflections	$\Delta \rho_{max} = 0.82 \text{ e} \text{ Å}^{-3}$
552 parameters	$\Delta \rho_{min} = -1.46 \text{ e } \text{\AA}^{-3}$
108 restraints	Extinction correction: none
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Hg1	0.78607 (3)	0.22825 (2)	0.087425 (8)	0.04048 (10)	
N1	0.6181 (6)	0.4642 (5)	0.09040 (16)	0.0405 (14)	
N2	0.7257 (6)	0.4380 (5)	0.03912 (17)	0.0446 (14)	
N3	0.8152 (6)	-0.0190 (5)	0.06247 (17)	0.0456 (15)	
N4	0.9815 (6)	0.0114 (4)	0.10573 (16)	0.0400 (14)	
01	0.7511 (5)	0.1912 (4)	0.01725 (14)	0.0562 (14)	
C1	0.7067 (7)	0.3919 (6)	0.07289 (18)	0.0356 (15)	
C2	0.8659 (7)	0.0599 (5)	0.08832 (19)	0.0364 (16)	
C3	0.5818 (8)	0.5568 (6)	0.0675 (2)	0.053 (2)	
H3	0.5218	0.6193	0.0730	0.063*	
C4	0.6487 (8)	0.5400 (6)	0.0362 (2)	0.055 (2)	
H4	0.6439	0.5894	0.0156	0.066*	
C5	0.5474 (7)	0.4420 (6)	0.1255 (2)	0.0472 (18)	
H5A	0.4552	0.4033	0.1198	0.057*	
H5B	0.5264	0.5167	0.1369	0.057*	
C6	0.6331 (7)	0.3695 (6)	0.15335 (19)	0.0401 (16)	
C7	0.5962 (8)	0.2543 (6)	0.1577 (2)	0.0507 (19)	
H7	0.5226	0.2219	0.1423	0.061*	
C8	0.6666 (9)	0.1856 (7)	0.1845 (2)	0.059 (2)	
H8	0.6406	0.1074	0.1868	0.071*	
C9	0.7719 (9)	0.2303 (8)	0.2072 (2)	0.064 (2)	
H9	0.8177	0.1824	0.2251	0.077*	
C10	0.8150 (7)	0.3472 (7)	0.2046 (2)	0.051 (2)	
C11	0.7459 (7)	0.4197 (6)	0.1767 (2)	0.0437 (17)	
C12	0.7841 (8)	0.5398 (7)	0.1752 (3)	0.062 (2)	
H12	0.7393	0.5886	0.1574	0.075*	

C13	0.8879 (10)	0.5835 (9)	0.2004 (3)	0.083 (3)
H13	0.9133	0.6621	0.1993	0.100*
C14	0.9563 (11)	0.5114 (11)	0.2276 (3)	0.093 (4)
H14	1.0252	0.5429	0.2446	0.111*
C15	0.9225 (9)	0.3971 (10)	0.2293 (3)	0.077 (3)
H15	0.9707	0.3499	0.2471	0.093*
C16	0.8153 (8)	0.3898 (7)	0.0104 (2)	0.056 (2)
H16A	0.9099	0.3698	0.0218	0.068*
H16B	0.8301	0.4498	-0.0081	0.068*
C17	0.7529 (10)	0.2839 (7)	-0.0088 (2)	0.065 (2)
H17A	0.6549	0.3001	-0.0186	0.077*
H17B	0.8116	0.2625	-0.0294	0.077*
C18	0.7271 (9)	0.0771 (7)	0.0039 (2)	0.063 (2)
H18A	0.8134	0.0488	-0.0076	0.076*
H18B	0.6473	0.0771	-0.0148	0.076*
C19	0.6917 (8)	-0.0015 (7)	0.0353 (3)	0.066 (3)
H19A	0.6106	0.0314	0.0480	0.080*
H19B	0.6612	-0.0769	0.0252	0.080*
C20	0.8994 (8)	-0.1176 (6)	0.0652 (2)	0.058 (2)
H20	0.8875	-0.1850	0.0509	0.069*
C21	1.0027 (8)	-0.0991 (6)	0.0926 (2)	0.052 (2)
H21	1.0745	-0.1515	0.1009	0.062*
C22	1.0724 (7)	0.0685 (5)	0.13471 (18)	0.0384 (16)
H22A	1.0608	0.1525	0.1320	0.046*
H22B	1.1733	0.0502	0.1307	0.046*
C23	1.0407 (7)	0.0353 (6)	0.1741 (2)	0.0405 (17)
C24	0.9391 (8)	-0.0466 (6)	0.1815 (2)	0.052 (2)
H24	0.8897	-0.0861	0.1621	0.063*
C25	0.9092 (10)	-0.0711 (7)	0.2189 (3)	0.068 (3)
H25	0.8407	-0.1281	0.2238	0.082*
C26	0.9761 (10)	-0.0150 (8)	0.2475 (3)	0.072 (3)
H26	0.9535	-0.0326	0.2718	0.087*
C27	1.0806 (9)	0.0706 (8)	0.2406 (2)	0.060(2)
C28	1.1169 (7)	0.0954 (6)	0.2036 (2)	0.0460 (18)
C29	1.2233 (8)	0.1818 (7)	0.1976 (2)	0.060 (2)
H29	1.2519	0.1968	0.1736	0.072*
C30	1.2843 (9)	0.2434 (8)	0.2272 (3)	0.079 (3)
H30	1.3532	0.3006	0.2229	0.095*
C31	1.2465 (12)	0.2229 (11)	0.2629 (3)	0.099 (4)
H31	1.2874	0.2675	0.2824	0.118*
C32	1.1476 (11)	0.1357 (10)	0.2701 (3)	0.086(3)
H32	1.1251	0.1199	0.2946	0.103*
P1	0.2485 (2)	0.25046 (17)	0.05306 (6)	0.0565 (6)
F1	0.0984 (6)	0.2867 (5)	0.07142 (18)	0.1065 (19)
F2	0.2972 (6)	0.3825 (4)	0.05426 (15)	0.0916 (17)
F3	0.3110 (7)	0.2339 (5)	0.09374 (17)	0.121 (2)
F4	0.1948 (7)	0.1215 (4)	0.05251 (18)	0.121 (2)
F5	0.1711 (8)	0.2736 (6)	0.01355 (16)	0.126 (2)
F6	0.3852 (7)	0.2175 (6)	0.0336 (3)	0.168 (4)

P2	0.4756 (3)	0.85219 (19)	0.12903 (7)	0.0684 (7)	
F7	0.4630 (11)	0.7192 (5)	0.1395 (2)	0.098 (4)	0.676 (17)
F8	0.5350 (14)	0.8758 (9)	0.1705 (2)	0.142 (6)	0.676 (17)
F9	0.3183 (8)	0.8715 (10)	0.1421 (4)	0.160 (7)	0.676 (17)
F10	0.4176 (16)	0.8252 (9)	0.0891 (2)	0.162 (7)	0.676 (17)
F11	0.6340 (8)	0.8292 (11)	0.1181 (4)	0.167 (7)	0.676 (17)
F12	0.4887 (16)	0.9829 (5)	0.1198 (3)	0.170 (7)	0.676 (17)
F7'	0.580 (2)	0.779 (2)	0.1544 (7)	0.25 (2)	0.324 (17)
F8'	0.390 (3)	0.8943 (16)	0.1622 (5)	0.136 (12)	0.324 (17)
F9'	0.372 (2)	0.7449 (17)	0.1231 (6)	0.213 (19)	0.324 (17)
F10'	0.558 (2)	0.8116 (14)	0.0936 (5)	0.118 (11)	0.324 (17)
F11'	0.579 (2)	0.9594 (16)	0.1324 (6)	0.137 (12)	0.324 (17)
F12'	0.370 (2)	0.925 (2)	0.1017 (6)	0.154 (13)	0.324 (17)
N5	-0.0008 (12)	0.5965 (9)	0.0750 (3)	0.119 (4)	
C33	0.0674 (11)	0.5635 (10)	0.1002 (4)	0.093 (4)	
C34	0.1418 (12)	0.5175 (13)	0.1326 (4)	0.151 (6)	
H34A	0.1599	0.5791	0.1503	0.226*	
H34B	0.2326	0.4841	0.1259	0.226*	
H34C	0.0831	0.4582	0.1433	0.226*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.04380 (15)	0.03932 (15)	0.03823 (15)	0.00852 (13)	0.00125 (10)	0.00183 (15)
N1	0.042 (3)	0.040 (3)	0.040 (4)	0.007 (3)	0.000 (3)	0.001 (3)
N2	0.053 (4)	0.043 (3)	0.038 (4)	0.002 (3)	0.002 (3)	0.010 (3)
N3	0.047 (3)	0.045 (4)	0.044 (4)	0.002 (3)	-0.001 (3)	-0.006 (3)
N4	0.039 (3)	0.036 (3)	0.045 (4)	0.004 (2)	0.000 (3)	0.002 (3)
O1	0.080 (4)	0.049 (3)	0.038 (3)	0.005 (3)	-0.003 (3)	-0.004 (2)
C1	0.038 (4)	0.045 (4)	0.023 (4)	0.004 (3)	-0.006 (3)	0.006 (3)
C2	0.036 (4)	0.035 (4)	0.038 (4)	-0.001 (3)	0.003 (3)	0.004 (3)
C3	0.064 (5)	0.038 (4)	0.055 (5)	0.011 (3)	0.004 (4)	0.012 (4)
C4	0.067 (5)	0.052 (5)	0.047 (5)	0.009 (4)	0.004 (4)	0.020 (4)
C5	0.045 (4)	0.045 (4)	0.052 (5)	0.015 (3)	0.007 (4)	-0.005 (4)
C6	0.040 (4)	0.047 (4)	0.034 (4)	0.013 (3)	0.006 (3)	-0.003 (3)
C7	0.058 (4)	0.043 (5)	0.051 (5)	-0.002 (3)	0.012 (4)	-0.007 (4)
C8	0.071 (5)	0.043 (4)	0.065 (6)	0.005 (4)	0.013 (5)	0.006 (4)
C9	0.062 (5)	0.069 (6)	0.062 (6)	0.029 (5)	0.015 (4)	0.019 (5)
C10	0.034 (4)	0.076 (6)	0.043 (5)	0.015 (4)	0.001 (3)	-0.004 (4)
C11	0.045 (4)	0.053 (5)	0.034 (4)	0.010 (3)	0.010 (3)	-0.002 (4)
C12	0.061 (5)	0.055 (5)	0.071 (6)	-0.003 (4)	0.009 (5)	-0.006 (5)
C13	0.070 (6)	0.085 (7)	0.096 (9)	-0.028 (5)	0.020 (6)	-0.039 (6)
C14	0.073 (7)	0.138 (10)	0.065 (8)	-0.012 (7)	-0.010 (6)	-0.047 (7)
C15	0.059 (6)	0.112 (8)	0.060 (6)	0.017 (5)	-0.006 (5)	-0.019 (6)
C16	0.061 (5)	0.058 (5)	0.051 (5)	0.002 (4)	0.014 (4)	0.018 (4)
C17	0.085 (6)	0.070 (6)	0.039 (5)	0.025 (5)	0.006 (4)	0.010 (5)
C18	0.072 (6)	0.063 (6)	0.053 (6)	0.004 (4)	-0.020 (5)	-0.009 (5)
C19	0.057 (5)	0.057 (5)	0.083 (7)	-0.001 (4)	-0.021 (5)	-0.016 (5)

C20	0.069 (5)	0.039 (4)	0.065 (6)	0.009 (4)	0.000 (5)	-0.013 (4)
C21	0.060 (5)	0.038 (4)	0.057 (5)	0.015 (3)	-0.003 (4)	-0.004 (4)
C22	0.039 (4)	0.040 (4)	0.036 (4)	0.003 (3)	-0.002 (3)	0.002 (3)
C23	0.045 (4)	0.036 (4)	0.042 (4)	0.011 (3)	0.011 (3)	0.014 (3)
C24	0.054 (5)	0.047 (4)	0.056 (5)	0.012 (4)	0.011 (4)	0.010 (4)
C25	0.075 (6)	0.061 (6)	0.070 (7)	0.013 (4)	0.025 (5)	0.024 (5)
C26	0.083 (7)	0.096 (7)	0.041 (6)	0.033 (6)	0.024 (5)	0.031 (5)
C27	0.057 (5)	0.090 (6)	0.035 (5)	0.035 (5)	0.011 (4)	0.010 (5)
C28	0.037 (4)	0.062 (5)	0.039 (5)	0.016 (3)	0.001 (3)	0.001 (4)
C29	0.046 (4)	0.081 (6)	0.052 (5)	-0.001 (4)	0.001 (4)	-0.008 (5)
C30	0.061 (5)	0.101 (7)	0.074 (7)	0.006 (5)	-0.015 (5)	-0.031 (6)
C31	0.086 (7)	0.149 (11)	0.058 (7)	0.038 (7)	-0.028 (6)	-0.054 (7)
C32	0.081 (7)	0.142 (10)	0.034 (5)	0.047 (7)	0.001 (5)	-0.001 (6)
P1	0.0708 (13)	0.0512 (15)	0.0477 (12)	-0.0113 (10)	0.0043 (10)	0.0032 (10)
F1	0.093 (4)	0.110 (4)	0.119 (5)	0.002 (3)	0.026 (4)	0.010 (4)
F2	0.134 (5)	0.059 (3)	0.081 (4)	-0.030 (3)	-0.003 (3)	0.009 (3)
F3	0.151 (6)	0.117 (5)	0.088 (5)	-0.046 (4)	-0.053 (4)	0.043 (4)
F4	0.188 (6)	0.060 (3)	0.120 (5)	-0.041 (4)	0.051 (5)	-0.020 (3)
F5	0.150 (6)	0.161 (6)	0.066 (4)	-0.056 (4)	-0.020 (4)	0.025 (4)
F6	0.110 (5)	0.127 (5)	0.277 (11)	0.016 (4)	0.108 (6)	0.001 (6)
P2	0.0722 (15)	0.0515 (15)	0.0814 (19)	0.0090 (11)	0.0026 (14)	-0.0021 (13)
F7	0.128 (9)	0.046 (5)	0.121 (9)	0.015 (5)	0.034 (7)	-0.006 (5)
F8	0.202 (15)	0.134 (10)	0.085 (8)	-0.020 (9)	-0.058 (9)	-0.010(7)
F9	0.091 (8)	0.187 (13)	0.202 (17)	0.079 (8)	-0.004 (9)	-0.024 (12)
F10	0.267 (19)	0.130 (10)	0.080 (8)	0.018 (12)	-0.080 (10)	-0.015 (7)
F11	0.083 (8)	0.218 (16)	0.204 (17)	-0.027 (8)	0.053 (9)	0.003 (13)
F12	0.32 (2)	0.051 (6)	0.136 (11)	-0.031 (8)	-0.061 (12)	0.013 (6)
F7'	0.21 (3)	0.21 (3)	0.32 (4)	0.08 (3)	-0.04 (3)	0.11 (3)
F8'	0.15 (2)	0.16 (2)	0.10(2)	0.067 (19)	0.042 (18)	-0.009 (16)
F9'	0.16 (3)	0.18 (3)	0.31 (4)	-0.11 (2)	0.05 (3)	0.01 (3)
F10'	0.113 (18)	0.072 (13)	0.18 (3)	-0.033 (13)	0.078 (17)	-0.066 (15)
F11'	0.14 (2)	0.16 (2)	0.11 (2)	-0.084 (18)	-0.024 (16)	-0.043 (17)
F12'	0.128 (19)	0.19 (3)	0.14 (2)	0.061 (19)	-0.023 (17)	0.02 (2)
N5	0.136 (9)	0.095 (7)	0.127 (10)	0.007 (7)	0.004 (8)	-0.008 (7)
C33	0.060 (7)	0.101 (9)	0.117 (11)	0.010 (6)	-0.003 (7)	-0.043 (8)
C34	0.081 (8)	0.253 (17)	0.116 (12)	0.056 (10)	-0.013 (8)	-0.055 (12)

Geometric parameters (Å, °)

C19—H19A	0.9700
C19—H19B	0.9700
C20—C21	1.349 (10)
C20—H20	0.9300
C21—H21	0.9300
C22—C23	1.508 (9)
C22—H22A	0.9700
C22—H22B	0.9700
C23—C24	1.358 (9)
C23—C28	1.419 (10)
	C19—H19A C19—H19B C20—C21 C20—H20 C21—H21 C22—C23 C22—H22A C22—H22B C23—C24 C23—C24 C23—C28

N3—C20	1.369 (8)	C24—C25	1.413 (11)
N3—C19	1.476 (9)	C24—H24	0.9300
N4—C2	1.328 (8)	C25—C26	1.335 (12)
N4—C21	1.366 (8)	C25—H25	0.9300
N4—C22	1.458 (8)	C26—C27	1.403 (12)
O1—C18	1.403 (8)	C26—H26	0.9300
O1—C17	1.414 (8)	C27—C32	1.412 (12)
C3—C4	1.324 (10)	C27—C28	1.416 (10)
С3—Н3	0.9300	C28—C29	1.415 (10)
C4—H4	0.9300	C29—C30	1.374 (11)
C5—C6	1.494 (9)	С29—Н29	0.9300
С5—Н5А	0.9700	C30—C31	1.365 (14)
С5—Н5В	0.9700	С30—Н30	0.9300
C6—C7	1.370 (9)	C31—C32	1.383 (14)
C6—C11	1.423 (9)	C31—H31	0.9300
С7—С8	1.379 (10)	С32—Н32	0.9300
С7—Н7	0.9300	P1—F6	1.516 (6)
C8—C9	1.336 (11)	P1—F4	1.555 (5)
C8—H8	0.9300	P1—F3	1.555 (6)
C9—C10	1.399 (11)	P1—F2	1.575 (5)
С9—Н9	0.9300	P1—F5	1.579 (6)
C10—C15	1.416 (11)	P1—F1	1.614 (6)
C10—C11	1.427 (10)	P2—F8'	1.536 (8)
C11—C12	1.419 (10)	P2—F12	1.537 (6)
C12—C13	1.377 (11)	P2—F10	1.538 (6)
C12—H12	0.9300	P2—F7'	1.539 (8)
C13—C14	1.405 (14)	P2—F11	1.551 (6)
С13—Н13	0.9300	P2—F11'	1.555 (8)
C14—C15	1.346 (13)	P2—F9	1.560 (7)
C14—H14	0.9300	P2—F9'	1.561 (8)
C15—H15	0.9300	P2—F7	1.572 (6)
C16—C17	1.495 (10)	P2—F10'	1.582 (8)
C16—H16A	0.9700	P2—F12'	1.585 (8)
C16—H16B	0.9700	P2—F8	1.585 (6)
C17—H17A	0.9700	N5—C33	1.141 (13)
C17—H17B	0.9700	C33—C34	1.421 (16)
C18—C19	1.489 (11)	C34—H34A	0.9600
C18—H18A	0.9700	C34—H34B	0.9600
C18—H18B	0.9700	C34—H34C	0.9600
C2—Hg1—C1	166.3 (3)	С24—С25—Н25	118.9
C2—Hg1—O1	83.6 (2)	C25—C26—C27	119.5 (8)
C1—Hg1—O1	82.9 (2)	C25—C26—H26	120.2
C1—N1—C3	109.3 (6)	С27—С26—Н26	120.2
C1—N1—C5	127.0 (5)	C26—C27—C32	120.9 (9)
C3—N1—C5	122.9 (6)	C26—C27—C28	120.1 (8)
C1—N2—C4	108.4 (6)	C32—C27—C28	119.0 (9)
C1—N2—C16	126.4 (6)	C29—C28—C27	118.8 (8)
C4—N2—C16	125.2 (6)	C29—C28—C23	123.0 (7)
C2—N3—C20	108.8 (6)	C27—C28—C23	118.3 (7)

C2—N3—C19	126.1 (6)	C30—C29—C28	119.9 (9)
C20—N3—C19	125.1 (6)	С30—С29—Н29	120.1
C2—N4—C21	110.4 (6)	С28—С29—Н29	120.1
C2—N4—C22	124.6 (5)	C31—C30—C29	121.8 (10)
C21—N4—C22	125.1 (6)	С31—С30—Н30	119.1
C18—O1—C17	118.5 (6)	С29—С30—Н30	119.1
C18—O1—Hg1	120.0 (4)	C30—C31—C32	120.0 (9)
C17—O1—Hg1	121.5 (4)	C30—C31—H31	120.0
N1—C1—N2	106.9 (5)	C32—C31—H31	120.0
N1—C1—Hg1	131.0 (5)	C31—C32—C27	120.5 (9)
N2—C1—Hg1	121.6 (5)	С31—С32—Н32	119.8
N4—C2—N3	106.6 (5)	С27—С32—Н32	119.8
N4—C2—Hg1	132.4 (5)	F6—P1—F4	91.7 (4)
N3—C2—Hg1	119.9 (5)	F6—P1—F3	97.2 (5)
C4—C3—N1	106.8 (6)	F4—P1—F3	90.0 (3)
С4—С3—Н3	126.6	F6—P1—F2	90.5 (3)
N1—C3—H3	126.6	F4—P1—F2	177.8 (4)
C3—C4—N2	108.6 (7)	F3—P1—F2	89.9 (3)
C3—C4—H4	125.7	F6—P1—F5	88.6 (5)
N2—C4—H4	125.7	F4—P1—F5	91.1 (3)
N1—C5—C6	115.4 (5)	F3—P1—F5	174.1 (4)
N1—C5—H5A	108.4	F2—P1—F5	88.8 (3)
С6—С5—Н5А	108.4	F6—P1—F1	176.7 (5)
N1—C5—H5B	108.4	F4—P1—F1	88.3 (3)
C6—C5—H5B	108.4	F3—P1—F1	86.1 (4)
H5A—C5—H5B	107.5	F2—P1—F1	89.5 (3)
C7—C6—C11	119.9 (6)	F5—P1—F1	88.1 (4)
C7—C6—C5	119.0 (7)	F8'—P2—F12	84.9 (9)
C11—C6—C5	121.0 (6)	F8'—P2—F10	128.3 (8)
C6—C7—C8	121.1 (7)	F12—P2—F10	91.2 (4)
С6—С7—Н7	119.5	F8'—P2—F7'	92.3 (6)
С8—С7—Н7	119.5	F12—P2—F7'	127.2 (9)
C9—C8—C7	120.6 (7)	F10—P2—F7'	128.3 (10)
С9—С8—Н8	119.7	F8'—P2—F11	140.5 (8)
С7—С8—Н8	119.7	F12—P2—F11	91.5 (5)
C8—C9—C10	121.7 (7)	F10—P2—F11	91.0 (5)
С8—С9—Н9	119.2	F7'—P2—F11	59.3 (9)
С10—С9—Н9	119.2	F8'—P2—F11'	91.6 (6)
C9—C10—C15	122.4 (8)	F12—P2—F11'	36.5 (8)
C9—C10—C11	118.9 (7)	F10—P2—F11'	114.5 (8)
C15—C10—C11	118.7 (8)	F7'—P2—F11'	91.2 (6)
C12—C11—C6	122.9 (7)	F11—P2—F11'	64.6 (8)
C12—C11—C10	119.1 (7)	F8'—P2—F9	37.4 (8)
C6—C11—C10	117.8 (7)	F12—P2—F9	90.6 (5)
C13—C12—C11	119.4 (8)	F10—P2—F9	91.4 (4)
C13—C12—H12	120.3	F7/	117.5 (9)
C11—C12—H12	120.3	F11—P2—F9	1/6.7 (5)
C12 - C13 - C14	121.2 (9)	F11'	116.1 (8)
C12—C13—H13	119.4	F8'—P2—F9'	91.2 (6)

C14—C13—H13	119.4	F12—P2—F9'	142.0 (9)
C15-C14-C13	120.3 (9)	F10—P2—F9'	62.3 (9)
C15-C14-H14	119.8	F7'—P2—F9'	90.6 (6)
C13-C14-H14	119.8	F11—P2—F9'	114.1 (8)
C14—C15—C10	121.2 (9)	F11'—P2—F9'	176.7 (7)
C14—C15—H15	119.4	F9—P2—F9'	65.3 (8)
C10-C15-H15	119.4	F8'—P2—F7	94.1 (8)
N2-C16-C17	114.5 (6)	F12—P2—F7	178.6 (5)
N2—C16—H16A	108.6	F10—P2—F7	90.2 (4)
C17—C16—H16A	108.6	F7'—P2—F7	51.9 (10)
N2—C16—H16B	108.6	F11—P2—F7	88.7 (4)
C17—C16—H16B	108.6	F11'—P2—F7	142.7 (9)
H16A—C16—H16B	107.6	F9—P2—F7	89.1 (4)
O1—C17—C16	108.5 (6)	F9'—P2—F7	38.8 (9)
O1—C17—H17A	110.0	F8'—P2—F10'	177.4 (7)
С16—С17—Н17А	110.0	F12—P2—F10'	93.8 (8)
O1—C17—H17B	110.0	F10—P2—F10'	49.4 (7)
С16—С17—Н17В	110.0	F7'—P2—F10'	90.3 (5)
H17A—C17—H17B	108.4	F11—P2—F10'	41.7 (7)
O1—C18—C19	109.8 (7)	F11'—P2—F10'	88.7 (5)
O1	109.7	F9—P2—F10'	140.6 (8)
C19—C18—H18A	109.7	F9'—P2—F10'	88.5 (5)
O1C18H18B	109.7	F7—P2—F10'	87.2 (7)
C19—C18—H18B	109.7	F8'—P2—F12'	89.8 (5)
H18A—C18—H18B	108.2	F12—P2—F12'	53.5 (8)
N3—C19—C18	113.1 (6)	F10—P2—F12'	49.7 (8)
N3—C19—H19A	109.0	F7'—P2—F12'	177.9 (7)
C18—C19—H19A	109.0	F11—P2—F12'	119.2 (8)
N3—C19—H19B	109.0	F11'—P2—F12'	89.3 (5)
C18—C19—H19B	109.0	F9—P2—F12'	64.1 (8)
H19A—C19—H19B	107.8	F9'—P2—F12'	88.8 (5)
C21—C20—N3	107.4 (6)	F7—P2—F12'	127.5 (9)
C21—C20—H20	126.3	F10'—P2—F12'	87.7 (5)
N3—C20—H20	126.3	F8'—P2—F8	51.9 (8)
C20—C21—N4	106.8 (6)	F12—P2—F8	90.6 (4)
C20—C21—H21	126.6	F10—P2—F8	178.2 (5)
N4—C21—H21	126.6	F7'—P2—F8	50.3 (10)
N4—C22—C23	115.2 (5)	F11—P2—F8	88.9 (4)
N4—C22—H22A	108.5	F11'—P2—F8	67.0 (8)
C23—C22—H22A	108.5	F9—P2—F8	88.6 (4)
N4—C22—H22B	108.5	F9'—P2—F8	116.2 (9)
C23—C22—H22B	108.5	F7—P2—F8	88.1 (4)
H22A—C22—H22B	107.5	F10'—P2—F8	130.4 (8)
C24—C23—C28	120.5 (7)	F12'—P2—F8	131.7 (9)
C24—C23—C22	121.6 (7)	N5—C33—C34	175.2 (15)
C28—C23—C22	117.8 (6)	С33—С34—Н34А	109.5
C23—C24—C25	119.4 (8)	C33—C34—H34B	109.5
C23—C24—H24	120.3	H34A—C34—H34B	109.5
C25—C24—H24	120.3	C33—C34—H34C	109.5

C26—C25—C24	122.2 (8)	H34A—C34—H34C	109.5
С26—С25—Н25	118.9	H34B—C34—H34C	109.5
C2—Hg1—O1—C18	28.4 (5)	C9—C10—C11—C6	1.7 (10)
C1—Hg1—O1—C18	-153.7 (5)	C15—C10—C11—C6	-176.9 (6)
C2—Hg1—O1—C17	-152.7 (5)	C6-C11-C12-C13	175.7 (7)
C1—Hg1—O1—C17	25.3 (5)	C10-C11-C12-C13	0.8 (11)
C3—N1—C1—N2	-0.3 (7)	C11—C12—C13—C14	-0.3 (14)
C5—N1—C1—N2	169.5 (6)	C12—C13—C14—C15	0.9 (15)
C3—N1—C1—Hg1	-172.4 (5)	C13-C14-C15-C10	-1.9 (15)
C5—N1—C1—Hg1	-2.5 (10)	C9—C10—C15—C14	-176.3 (8)
C4—N2—C1—N1	0.5 (7)	C11-C10-C15-C14	2.3 (13)
C16—N2—C1—N1	179.3 (6)	C1—N2—C16—C17	73.3 (9)
C4—N2—C1—Hg1	173.4 (5)	C4—N2—C16—C17	-108.0 (8)
C16—N2—C1—Hg1	-7.7 (9)	C18—O1—C17—C16	-166.3 (6)
C2—Hg1—C1—N1	151.3 (9)	Hg1	14.7 (8)
O1—Hg1—C1—N1	142.7 (6)	N2-C16-C17-O1	-66.7 (8)
C2—Hg1—C1—N2	-19.8 (13)	C17—O1—C18—C19	-165.6 (6)
O1—Hg1—C1—N2	-28.3 (5)	Hg1-O1-C18-C19	13.4 (8)
C21—N4—C2—N3	-2.4 (8)	C2—N3—C19—C18	74.7 (10)
C22—N4—C2—N3	177.6 (6)	C20-N3-C19-C18	-104.0 (8)
C21—N4—C2—Hg1	-169.6 (5)	O1-C18-C19-N3	-67.1 (8)
C22—N4—C2—Hg1	10.3 (10)	C2—N3—C20—C21	-0.5 (9)
C20—N3—C2—N4	1.8 (8)	C19—N3—C20—C21	178.4 (7)
C19—N3—C2—N4	-177.1 (7)	N3-C20-C21-N4	-0.9 (9)
C20—N3—C2—Hg1	170.9 (5)	C2-N4-C21-C20	2.1 (9)
C19—N3—C2—Hg1	-8.0 (9)	C22—N4—C21—C20	-177.9 (7)
C1—Hg1—C2—N4	127.6 (10)	C2—N4—C22—C23	99.1 (7)
O1—Hg1—C2—N4	136.1 (7)	C21—N4—C22—C23	-81.0 (8)
C1—Hg1—C2—N3	-38.3 (13)	N4—C22—C23—C24	3.1 (9)
O1—Hg1—C2—N3	-29.7 (5)	N4—C22—C23—C28	-174.7 (5)
C1—N1—C3—C4	0.1 (8)	C28—C23—C24—C25	0.4 (10)
C5—N1—C3—C4	-170.3 (6)	C22—C23—C24—C25	-177.4 (6)
N1—C3—C4—N2	0.2 (9)	C23—C24—C25—C26	1.0 (12)
C1—N2—C4—C3	-0.4 (9)	C24—C25—C26—C27	-0.6 (13)
C16—N2—C4—C3	-179.3 (7)	C25—C26—C27—C32	176.6 (8)
C1—N1—C5—C6	33.7 (10)	C25—C26—C27—C28	-1.3 (12)
C3—N1—C5—C6	-157.7 (6)	C26—C27—C28—C29	-179.7 (7)
N1—C5—C6—C7	-103.0 (7)	C32—C27—C28—C29	2.3 (10)
N1-C5-C6-C11	80.6 (8)	C26—C27—C28—C23	2.6 (10)
C11—C6—C7—C8	0.1 (10)	C32—C27—C28—C23	-175.3 (7)
C5—C6—C7—C8	-176.2 (7)	C24—C23—C28—C29	-179.7 (7)
C6—C7—C8—C9	0.6 (12)	C22—C23—C28—C29	-1.9 (10)
C7—C8—C9—C10	-0.2 (12)	C24—C23—C28—C27	-2.2 (10)
C8—C9—C10—C15	177.6 (8)	C22-C23-C28-C27	175.7 (6)
C8—C9—C10—C11	-1.0 (11)	C27—C28—C29—C30	-2.9 (11)
C7—C6—C11—C12	-176.3 (7)	C23—C28—C29—C30	174.6 (7)
C5—C6—C11—C12	0.0 (10)	C28—C29—C30—C31	0.8 (13)
C7—C6—C11—C10	-1.3 (10)	C29—C30—C31—C32	2.0 (15)
C5—C6—C11—C10	175.0 (6)	C30—C31—C32—C27	-2.6 (14)

C9—C10—C11—C12	176.9 (7)	C26—C27—C32—	·C31	-177.6 (8)
C15-C10-C11-C12	-1.7 (10)	C28—C27—C32—	·C31	0.4 (12)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C5—H5A…F3	0.97	2.50	3.384 (9)	151
C5—H5B…F7	0.97	2.39	3.307 (9)	157
C18—H18A…F4 ⁱ	0.97	2.53	3.150 (10)	122
C22—H22B…F9 ⁱⁱ	0.97	2.46	3.195 (11)	132
C24—H24…N4	0.93	2.50	2.847 (9)	103
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) x	+1, <i>y</i> -1, <i>z</i> .			

